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Abstract

Photo deblurring has been a major research topic in the
past few years. So far, existing methods have focused on
removing the blur due to camera shake and object motion.
In this paper, we show that the optical system of the cam-
era also generates signi�cant blur, even with professional
lenses. We introduce a method to estimate the blur ker-
nel densely over the image and across multiple aperture
and zoom settings. Our measures show that the blur kernel
can have a non-negligible spread, even with top-of-the-line
equipment, and that it varies nontrivially over this domain.
In particular, the spatial variations are not radially sym-
metric and not even left-right symmetric. We develop and
compare two models of the optical blur, each of them hav-
ing its own advantages. We show that our models predict
accurate blur kernels that can be used to restore photos. We
demonstrate that we can produce images that are more uni-
formly sharp unlike those produced with spatially-invariant
deblurring techniques.

1. Introduction

Many factors can contribute to the undesired blurriness
of a photograph. While researchers have well studied blur
sources such as camera shake, subject motion, and defocus,
and proposed effective solutions to restore the correspond-
ing photos, degradations due to the camera optical system
have received little attention. This is particularly unfortu-
nate because optical degradations affect every photograph
and cannot be easily removed. This problem is well-known
in the photography community as “soft corners” or “coma
aberration”, and is a discriminating factor between entry-
level lenses and professional-grade equipment.

The topic of our study is optical blur. We set up an imag-
ing system in a controlled environment and develop a series
of algorithms to extract and evaluate optical blurs that are
intrinsic to a particular lens-camera arrangement. Our re-
sults show that real optical blur is not only spatially-varying,
but also asymmetric. We propose two models to predict the
blur kernel (also known aspoint spread functionfor optical

blurs) at any location in the image and for any aperture and
focal length, including settings for which we did not make a
measurement. This property is key to building a lens pro�le
from few measurements: without it, one would need to fully
sample the parameter space of each lens, which is often im-
practical. Finally, we show that by using the kernels pre-
dicted by our models, we can improve the sharpness of the
photos captured by corresponding lenses, even when blind
deconvolution might fail.

The main contributions presented in this paper include a
comprehensive study that reveals unique characteristics of
lens blur and two compact optical blur models that enable
high quality deblurring results.

1.1. Related Work

Many techniques have been proposed to estimate and
remove blur due to camera shake, motion, and defocus,
e.g. [1, 2, 4, 6, 8, 12, 14, 16, 18] and references therein. This
paper is about blurs that are created in the optics and can-
not be signi�cantly improved by focus adjustment. Such
blurs have received little attention in comparison. Hsien-
Che Lee [10] models a generic optical system, however, our
measurements show that there are strong dependencies on
the particular lens being used. Sungkil Lee et al. [11] de-
scribe optical aberrations from a rendering perspective and
note that these effects are often present in real imagery. Gu
et al. [5] develop methods to correct dirty or partially oc-
cluded optics and Raskar et al. [15] model glare in lenses.

The work that is most related has been done by Joshi et
al. [9] to estimate PSFs from edges in the image. They de-
scribe how to use a printed pattern to calibrate a camera at
a given aperture and focal length and show that they can re-
store images taken later with the same parameters. We use a
similar approach based on a printed pattern. The major im-
provement brought by our work is that we use our measures
to build a parametric model of the spatially-varying optical
blur. We show that, with our model, we can restore photos
taken with any setting and independently of the image con-
tent, which enables the restoration of photos that would be
challenging for image-dependent methods, e.g. [9].



2. Modeling Optical Blur

We describe a method to model spatially-varying optical
blurs that are intrinsic to a particular lens–camera arrange-
ment. This optical blur varies within an image and depends
upon the optical parameters. We model the blur by cap-
turing calibration images from a known lens and camera
(Section 2.1), estimating non-parametric blur kernels over
local patches of the calibration images (Section 2.2), �tting
a parametric blur kernel to each non-parametric kernel (Sec-
tion 2.3), and modeling how the kernel parameters vary with
sensor location and optical settings (Section 2.4).

2.1. Image Capture

We capture images in a controlled environment to isolate
optical blur. A planar calibration target is placed in the en-
vironment and a camera is mounted on a tripod at a �xed
viewing distance. The tripod head is manually adjusted to
align the lines of the test chart to the edges of the camera
view�nder. The camera is focused on the center of the test
chart using a remote control and images are captured with
the internal mirror locked up to eliminate camera vibrations.
This con�guration is suf�cient to calibrate lenses with focal
lengths above17mm and apertures larger thanf=4, which
do not have signi�cant depth-of-�eld blur in the corners.
We capture all images in RAW format at the lowest avail-
able ISO setting and estimate blur on RAW color channels
prior to color matrixing.

2.2. Non­parametric Kernel Estimation

To model optical blur we begin by computing non-
parametric blur kernels that describe the blur in small re-
gions of the test images. Each test image contains a
checkerboard test chart with �ve circles in each square to
capture how step-edges of all orientations are blurred. For
each square in the test image we align the mathematical def-
inition of the test chart to the local region and synthesize a
sharp square (Section 2.2.1). We use the test image and syn-
thesized sharp square to estimate a non-parametric kernel
(Section 2.2.2). This process is summarized in Figure 1.

2.2.1 Test Chart Alignment

The test chart is aligned to individual squares in the test im-
age before estimating the corresponding blur kernel. The
corners of the square in the test image are localized and a
bootstrap projective homographyH is computed that aligns
the test chart to the square [7]. The homography is used to
rasterize a synthetic image of the square from its mathemat-
ical de�nition: chart edges are anti-aliased by computing
the fraction of the pixel that is �lled and the white/black
point are set to the histogram peaks of the square in the test
image. This shading is effective because it is applied lo-

Figure 1. Blur estimation. Top left, the test chart; top right, a test
image with optical blur; bottom left, the synthesized, aligned, test
chart; bottom right, the3x super-resolved non-parametric kernel.

cally. The homography is then iteratively re�ned. In thei th

iteration, a coarse-to-�ne differential registration technique
is used to compute a projective homographyH i that aligns
the synthetic square to the observed image. The homogra-
phy is then updated,H  H i H and the synthetic image
is re-rasterized. This iteration ends whenH i is close to an
identity. The resulting homography gives sub-pixel align-
ment between the test chart and blurry square, Figure 1.

2.2.2 Kernel Estimation

We estimate non-parametric blur kernels for each square by
synthesizing a sharp square from the aligned test chart. The
blur kernel can be computed by using conjugate gradient de-
scent to solve the least squares systemAk = b, wherek is
the kernel,A is a Toeplitz matrix that encodes the convolu-
tion of the sharp square with the kernel, andb is the blurry
square. This optimization can be performed ef�ciently in
the Fourier domain without explicitly constructingA. Al-
though this method allows negative kernel values, in prac-
tice these are small and easily removed by thresholding and
re-normalizing the kernel.

Because optical blurs are sometimes small, in practice
we super-resolve the blur kernel. The homographyH ,
which is known to sub-pixel accuracy, is used to synthe-
size a high-resolution test chart and the linear system be-
comesW A r kr = W Ub, whereA r andkr encode the high-
resolution test chart and kernel. MatrixU up-samplesband
W is a weight matrix that assigns zero-weight to interpo-
lated pixels. By formulating this problem withU andW ,
matrix A r does not need to be constructed and the convo-
lutions can be performed in the Fourier domain. This com-
putation is fast compared to non-negative least squares, as
in [9], and a smoothness regularization term was not nec-



essary. To account for the interpolant when deblurring, in
practice we estimate kernels with a uniform weight matrix
W = I . This additional smoothness does not distort the
kernel when observed at the original resolution. In this work
we super-resolve kernels at3x image resolution.

2.3. Parametric Kernel Fitting

Non-parametric kernels can describe complex blurs but
their high dimensionality masks the relationship between
the kernel shape and the optical parameters. We use a
2–D Gaussian distribution to reduce the dimensionality and
model the kernel shape. Because non-parametric kernels
can be noisy, we use a robust method to �t the2–D Gaus-
sian. The non-parametric kernel is thresholded, isolated
regions are labelled, and the maximum likelihood (ML)
estimator is used to �t a2–D Gaussian to the central re-
gion. The ML Gaussian then iteratively re�ned by using
the Levenberg-Marquardt algorithm to estimate the Gaus-
sian parameters that minimize the SSD error between the
non-parametric kernel and the synthesized2–D Gaussian.

To quantify the impact of the Gaussian approximation
and validate the robust �tting method, we compared images
that were deconvolved with non-parameteric kernels, ML
Gaussian kernels, and robust-�t Gaussian kernels. Specif-
ically, we used two images, one natural and one synthetic,
and called them sharp. We blurred both sharp images with
660non-parametric kernels that were estimated from a test
lens. This produced two sets of660 blurry images. We
deconvolved each of the blurry images with the requisite
non-parametric kernel, robust-�t Gaussian kernel, and ML
Gaussian kernel.

We measured the visual quality of the deconvolutions
by computing the mean Structural Similarity Index (SSIM)
[17] between the deconvolved and sharp images. If the
ML Gaussian kernels produce larger error than the robust-
�t Gaussians, the SSIM index of the robust-�t Gaussian is
greater. However, the difference between the two SSIM in-
dices is also greater when kernels are large because decon-
volution error increases with kernel size, even when using
the ground-truth kernel [14]. Therefore, we compare SSIM
indices and account for kernel size by comparing a ratio, as
in [14],

error ratio= ( SSIMnon + 2) =(SSIMgau+ 2) ; (1)

whereSSIMnon is the SSIM given by the non-parametric ker-
nel andSSIMgau is the SSIM given by a Gaussian kernel.
(The+2 is added to shift the SSIM into[1; 2]). This error
ratio is greater than one when deconvolution by the Gaus-
sian kernel produces worse results than the non-parametric
kernel and is equal to one when the Gaussian kernel pro-
duces an identical result.

Figure 2 (bottom) shows the cumulative distribution of
the errors for the ML Gaussians (dashed lines) and robust-
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Figure 2. Gaussian approximation error using robust and maxi-
mum likelihood Gaussians. Top, deconvolution with the Gaussian
kernels that gave the largest (worst) SSIM error ratio of all660
kernels. Bottom, cumulative distributions of error ratios. Dashed
lines, using the ML Gaussian; solid lines, the robust Gaussian.
Light/dark lines show error in the natural/synthetic image.

�t Gaussians (solid lines). The robust-�t Gaussians produce
lower deconvolution error:99%of the errors fell below 1.01
and 1.02 for the natural and synthetic images, respectively.
For the ML Gaussians,99% of the errors fell below1:15
and1:26.

Figure 2 (top) shows the deconvolved natural images that
gave the largest (worst) SSIM error ratio for both types
of Gaussian kernels. The worst robust-�t Gaussian kernel
produces a deconvolution result that is very similar to de-
convolution by the non-parametric kernel and improves the
blurry image. In contrast, the worst ML Gaussian produces
a deconvolution result with dramatic artifacts that are not
present when using the non-parametric kernel. The worst
ML Gaussian result (SSIM error ratio1:17), and worst
robust-�t Gaussian result (SSIM error ratio1:01), give intu-
ition for the range of visual errors along thex-axis of the cu-
mulative distribution (bottom). This demonstrates that the
robust-�t Gaussians produce visually small errors and are a
good approximation to the optical blurs in the test lens.

2.4. Kernel Variation Models

Optical blur depends upon multiple factors including
spatial location on the sensorx; y, focal lengthf , aperture
a, and color channel. Images may contain signi�cant, asym-
metric, optical blurs, particularly in the corners, Figure3. A



calibration image could be used to estimate and correct such
blurs for photos taken with the same lens settings; however,
in practice it is dif�cult or impossible to calibrate all possi-
ble settings. To overcome this problem we developed two
models, each with different strengths, to predict optical blur
at novel settings from a sparse set of calibration images.
Speci�cally, we compare two models to describe how the
Gaussian covariance parameters

� =
�
C 2

xx Cxy

Cxy C 2
yy

�
(2)

vary. The mean is assumed to be zero. Both models com-
prise three independent polynomials that predict the three
degrees of freedom in� , Cxx , Cyy , and the correlation
Cor = Cxy =Cxx Cyy . We model the blur in each color
channel separately and the remaining discussion addresses
a single color channel.

The �rst model is a polynomialG(x; y; f; a ), where
x; y are the spatial location of the kernel andf , a are
the focal length and aperture at which the image was cap-
tured. Speci�cally, this global model may be anyG�;�

that contains all polynomial terms inx; y; f; a up to order
max(�; � ), such that the order of terms that containx or
y is at most� and the order of terms that containf and
a is at most� . For example,G3;1 contains all third order
polynomial terms inx; y; f; a , excepting terms such asa2x.
Intuitively, � and� limit the complexity of the individual
polynomial predictors that compose the model. Parameters
� and� were selected to controlx; y andf; a because our
experiments show that optical blur is complex inx; y yet
simple inf; a (see Section 3).

The second model is a polynomialL (x; y; f; a ) that de-
scribes the blur in a localx; y region. The local model has
the same form as the global: anyL �;� that contains all poly-
nomial terms inx; y; f; a up to ordermax(�; � ), where�
and� control the complexity of the model inx; y andf; a .
The motivation behind this local model is illustrated in Fig-
ure 3. The relationship between optical blur andx; y may
be complex and require large� for G�;� ; however, small�
may be reasonable for a local region. Because we can easily
collect dense blur samples by decreasing the test chart scale,
the local model takes a more data-driven approach and �ts
L �;� to local regions in which� is small.

The radius of the local model and the test chart resolution
are chosen to match the complexity of the spatial variations.
For stability, the radius should be at least2x the width of the
largest imaged squares. A radius of3x worked well. Imaged
squares were between2% and6% of image width and we
sampled the blur at alternating squares.

2.4.1 Model Selection

To �t the blur models, images are captured at multiple focal
length and aperture combinations. The sampling resolution

Figure 3. Non-parametric kernels from two Canon17-40mm f= 4
lenses on a Canon1D Mark III (at 40mmf= 5). Kernels are super-
resolved at3x and enlarged for display. The maximum blur of the
Gaussian approximations has standard deviation of3 pixels; the
minimum is1 pixel standard deviation.

of f anda is estimated by cross-validation over� and� but
a starting point is needed for data collection. We began by
collecting a set of images at a �xed focal length and varying
aperture. For each image, we computed Gaussian kernels
and plottedCxx , Cyy , andCor at eachx; y location as a
function of aperture. We repeated this process for a �xed
aperture and varying focal length and used these aperture
and focal length sweep plots to select an initial sampling
resolution inf; a according to the rate at which the Gaussian
parameters vary, Figure 4 (details in Section 3).

The complexity of the global and local models is deter-
mined by cross-validation over� and� . A cross-validation
dataset ofN f � Na images is captured, whereN f andNa

are the number of samples in thef anda dimensions. The
sampling resolution constrains the complexity ofG�;� and
L �;� to � < min(N f ; Na). In this work, we consider
locally-linear modelsL 1;� and perform cross-validation of
L 1;� for � alone.

The values of� ,� for the global model are computed in
two cross-validation stages. LetN = min( N f ; Na). First
we plot the mean prediction error ofG�;N � 1 against� and
select an optimal value� opt. In the second stage, we repeat
this analysis forG� opt;� , � < N , and select� .



3. Model Complexity and Comparison

We estimated the focal length and aperture sampling res-
olution using a Canon24–105mm f=4 (MSRP $1; 249) on
a Canon1D Mark III, (MSRP$3; 999). Figure 4 shows the
aperture and focal length sweep plots forCxx . Each line
representsCxx measured at a �xed sensor location. We
performed the aperture sweep (left) by capturing images at
each aperture,f=4 to f=10. The focal length sweep (right)
was performed across the focal length range. Sharp varia-
tions in the focal length sweep are noise caused by manually
changing the focal length. Consequently, we subsampled
the aperture toNa = 5 settings,f= f 4; 5; 6:3; 8; 10g, and
N f = 5 focal lengths,f 24; 44; 65; 85; 105gmm.

We computed the complexity of the models by cross-
validation using the Canon24–105mm f=4 and a second
lens, a Canon17–40mm f=4 (MSRP $840). Similarly to
the24–105mm lens, we sampled the17–40mm at5 settings
in focal length and aperture. We collected50 images from
each lens, two images at each setting1. We computed the
Gaussian kernels for each image and used holdout-10cross
validation to compute prediction error.

Figure 5 shows cross-validation error for the global
model: left, error for� ; right, � . The local-linear plots for
� are similar to those in Figure 5 (right)2. We compute the
error as a percentage of the range of blurs on each lens and
de�ne this range to be the width of the99%con�dence in-
terval for each Gaussian parameter. Not shown in Figure 5
are the error distributions at each� , � . On the17–40mm
lens, 95% of the error is below20% for � > 6; on the
24–105mm lens,� > 5.

Based upon the mean and distributions of the cross-
validation error, we selected modelsG8;3 andL 1;3.

We compared the global and locally-linear mod-
els using a test set of16 images that we captured
at novel settings of the Canon17–40mm f=4 lens:
f 19:8; 25:6; 31:37; 37:1gmm andf= f 4:5; 5:6; 7:1; 9:0g.
We estimated the Gaussian kernels in each test image, �t
modelsG8;3 andL 1;3 to the cross-validation dataset, and
computed prediction error. Figure 6 shows the cumulative
distribution of error forG8;3 (dark solid lines) andL 1;3

(dark dashed lines). Top left,Cxx ; right, Cyy ; bottom,Cor .
For all parameters,95%of errors were below10%. Notably,
modelsG8;1 andL 1;1 (light lines) are also competitive.

To summarize, Figure 4 shows that optical blur varies
slowly with f; a and these dimensions may be subsampled.
Figure 5 shows that optical blur is complex inx; y, simple
in f; a , and we select modelsG8;3 andL 1;3. Figure 6 shows
thatG8;3 andL 1;3 are equally good models for the test lens.

1Samples from the cross-validation set are shown in Figures 1and 7.
2At L 1;3 , for the Canon24–105mm, mean cross-validation error was

3:6%, 3:7%, and3:4% (Cxx Cyy andCor ); for the Canon17–40mm it
was4:0%, 3:5%, and3:7%.
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Figure 4. Aperture and focal length sweeps forCxx using a Canon
24–105mmf= 4 lens on a Canon1D Mark III. Each line represents
the Cxx term at a �xed sensor location. Thex-axis labels mark
the sampled parameter values. Left,Cxx at 105mm from f= 4 to
f= 10; right, Cxx at f= 4 from 24–105mm.
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Figure 5. Mean cross-validation error for the global model using
two lenses. Top row, Canon24–105mm f= 4; bottom row, Canon
17–40mm f= 4. Dark and light solid lines representCxx andCyy

error; dashed lines,Cor error. Left, mean percent error for models
G�; 4 . Right, mean percent error for modelsG8;� .

4. Results

To give intuition for the visual impact of prediction er-
ror, we selected Gaussian kernels with an average error of
1%, 10%, and maximum error under theL 1;3 model. For
each kernel, we deconvolved the requisite square in the test
image using the predicted Gaussian kernel, the robust-�t
Gaussian kernel, and the non-parametric kernel, Figure 7.
We used the non-blind deconvolution algorithm described
in [12] (code: [13]). At1% error (top row), the predicted
and robust-�t kernels produce nearly identical results. At
10% error (middle row), the predicted kernel produces a
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Figure 6. Cumulative distribution of test error when predicting
blurs at novel lens settings. Top left,Cxx , right Cyy , bottomCor .
Solid lines denote global models; dashed lines denote locally-
linear models. Dark lines denoteG8;3 andL 1;3 models; light lines
denoteG8;1 andL 1;1 models.

sharper result than the robust-�t kernel, demonstrating that
the model reduces noise in the individual samples. At40%
error (bottom row), both the predicted and robust-�t kernels
produce blurrier results than the non-parametric kernel.

To test deblurring outside of the lab, we captured two im-
ages using the Canon17–40mmf=4 on a Canon1D Mark
III. The �rst is a dominantly planar indoor scene, Figure 8
(top). We placed the camera on a �at surface, supported the
body manually, used mirror-up mode to reduce vibration,
and focused on a location near11 on the center clock dial.
Spatially-varying blur can be seen at locations1 and2, Fig-
ure 8 (middle and bottom). We deconvolved both locations
using the Gaussian kernel predicted byL 1;3 (�gure label b)
and a non-parametric kernel (�gure labela) estimated from
a calibration image. The predicted kernel produces a result
that is very similar to the non-parametric kernel.

For additional comparison, we deblurred the indoor im-
age with the optical deblurring software, DxO [3]. We ad-
justed the parameters for the best output, Figure 11. Com-
pare the DxO result to the result when using a ground truth
kernel taken from a calibration image and when using the
predicted Gaussian. The DxO result is blurrier, possibly be-
cause one model is used for all Canon17–40mmf=4 lenses.

We captured an outdoor image with the same setting as
the indoor image,35mm f=4, Figure 9 (top). Spatially
varying blur can be seen at locations1 and2. The image
is sharper when deconvolving with both theL 1;3 Gaussian

Original DxO Algorithm

Ground Truth Kernel Predicted Kernel

Figure 11. Comparison to DxO software [3]. A non-parametric
kernel from a calibration image is used as ground truth. TheL 1;3-
predicted Gaussian kernel produces a sharper solution thanDxO.

and the non-parametric kernel (labelsbanda).
We also tested a consumer-grade system, a Canon Rebel

T2i with a 18–55mm f=3:5–5:6 lens (MSRP $899 com-
bined). Deblurring results at18mmf=3:5 are shown in Fig-
ure 10. Blurs for the Rebel are spatially-varying and smaller
at 18mm f=3:5 than the Canon17–40mm (relative to the
much larger image size of the T2i).

The full resolution images for Figures 8–11 are available
at: http://www.juew.org/lensblur/materials.zip

Finally, we tested two additional lenses, a Nikkor
24–120mmf=3:5� 5:6(MSRP $669) on a Nikon D3 (MSRP
$4; 999), and a duplicate Canon17–40mm f=4. Predic-
tion error was low for the Nikkor:95%of predictions were
within 10%error. We used the duplicate Canon lens to test
if optical blur varies across lenses of the same make/model.
Using the �rst Canon model to predict blurs in the duplicate
gave large error:95%of prediction errors were below51%,
46%, and74% error3. The blur in the duplicate Canon is
quantitatively and qualitatively different, Figure 3.

5. Discussion

The results show that our optical models provide accu-
rate kernels for image restoration and successfully interpo-
late data between measurement points. Practically, the size
of the models—global� 12kb, local � 200kb—is suf�-
ciently small to be included in photo editing packages. Fur-
thermore, the low-order relationship between optical blur
and focal length/aperture allows both models to be �t with
few calibration images and the Gaussian parameters can be
ef�ciently estimated directly from an image.

An intriguing point is that the kernels that we measured
differ from Joshi's [9], which are more disc-shaped. One

3Prediction error is de�ned in Section 3.
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Error Original Parametric Robust Fit Predicted Parametric Robust Fit Predicted

1%

10%

40%

Figure 7. Deconvolution at varying prediction error. Firstcolumn, the mean prediction error of the sample'sCxx , Cyy , Cor . Left half,
deconvolution using each kernel type; right half, the kernels.

explanation is that Joshi and colleagues studied consumer-
grade lenses that may suffer from front- or back-focusing.
In this case, their measures would be dominated by defocus
blur that corresponds to the image of the aperture possibly
truncated by the lens barrel. Our pro-grade lenses are likely
to focus accurately and greatly reduce defocus blur. Our ob-
servations are mostly due to imperfections in the glass used
to build the lens. This difference is also consistent with the
fact that Joshi's kernels are symmetric because they depend
on the shape of the barrel, whereas ours are not because
they are due to inaccuracies in the glass. We believe that it
is important to model the optical inaccuracies because, as
we have shown, these visibly degrade image sharpness.
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Figure 8. Image taken with a Canon 1D Mark
III, at 35mmf= 4:5. Imagesa; bare deblurred
with non-parametric and Gaussian kernels.

Figure 9. Image taken with a Canon 1D Mark
III, at 35mmf= 4:5. Imagesa; bare deblurred
with non-parametric and Gaussian kernels.

Figure 10. Image taken with a Canon Rebel
T2i at18mmf= 3:5. Imagesa; bare deblurred
with non-parametric and Gaussian kernels.


