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Abstract blurs) at any location in the image and for any aperture and

focal length, including settings for which we did not make a
Photo deblurring has been a major research topic in the measurement. This property is key to building a lens pro le
past few years. So far, existing methods have focused orirom few measurements: without it, one would need to fully
removing the blur due to camera shake and object motion.sample the parameter space of each lens, which is often im-
In this paper, we show that the optical system of the cam-practical. Finally, we show that by using the kernels pre-
era also generates signi cant blur, even with professional dicted by our models, we can improve the sharpness of the
lenses. We introduce a method to estimate the blur ker-photos captured by corresponding lenses, even when blind
nel densely over the image and across multiple aperture deconvolution might fail.
and zoom Settings. Our measures show that the blur kernel The main contributions presented in this paper include a
can have a non-negligible spread, even with top-of-the-lin - comprehensive study that reveals unique characteristics o

equipment, and that it varies nontrivially over this domain  |ens plur and two compact optical blur models that enable
In particular, the spatial variations are not radially sym-  high quality deblurring results.

metric and not even left-right symmetric. We develop and
compare two models of the optical blur, each of them hav-
ing its own advantages. We show that our models predict1.1. Related Work
accurate blur kernels that can be used to restore photos. We
demonstrate that we can produce images that are more uni-
formly sharp unlike those produced with spatially-invartia
deblurring techniques.

Many techniques have been proposed to estimate and
remove blur due to camera shake, motion, and defocus,
e.g.[1,2,4,6,8,12,14,16, 18] and references thereins Thi
paper is about blurs that are created in the optics and can-
not be signi cantly improved by focus adjustment. Such
. blurs have received little attention in comparison. Hsien-
1. Introduction Che Lee [10] models a generic optical system, however, our

Many factors can contribute to the undesired blurriness measurements show that there are strong dependencies on
of a photograph. While researchers have well studied blurthe particular lens being used. Sungkil Lee et al. [11] de-
sources such as camera shake, subject motion, and defocug¢ribe optical aberrations from a rendering perspectize an
and proposed effective solutions to restore the correspond note that these effects are often present in real imagery. Gu
ing photos, degradations due to the camera optical systenft al- [5] develop methods to correct dirty or partially oc-
have received little attention. This is particularly unter ~ cluded optics and Raskar et al. [15] model glare in lenses.
nate because optical degradations affect every photograph The work that is most related has been done by Joshi et
and cannot be easily removed. This problem is well-known al. [9] to estimate PSFs from edges in the image. They de-
in the photography community as “soft corners” or “coma scribe how to use a printed pattern to calibrate a camera at
aberration”, and is a discriminating factor between entry- a given aperture and focal length and show that they can re-
level lenses and professional-grade equipment. store images taken later with the same parameters. We use a

The topic of our study is optical blur. We set up animag- similar approach based on a printed pattern. The major im-
ing system in a controlled environment and develop a seriesprovement brought by our work is that we use our measures
of algorithms to extract and evaluate optical blurs that are to build a parametric model of the spatially-varying opitica
intrinsic to a particular lens-camera arrangement. Our re-blur. We show that, with our model, we can restore photos
sults show that real optical blur is not only spatially-viagy, taken with any setting and independently of the image con-
but also asymmetric. We propose two models to predict thetent, which enables the restoration of photos that would be
blur kernel (also known gsoint spread functioffior optical challenging for image-dependent methods, e.g. [9].



2. Modeling Optical Blur

We describe a method to model spatially-varying optical
blurs that are intrinsic to a particular lens—camera amang
ment. This optical blur varies within an image and depends
upon the optical parameters. We model the blur by cap-
turing calibration images from a known lens and camera
(Section 2.1), estimating non-parametric blur kernelsrove
local patches of the calibration images (Section 2.2)ndti
a parametric blur kernel to each non-parametric kernek(Sec
tion 2.3), and modeling how the kernel parameters vary with
sensor location and optical settings (Section 2.4).

2.1. Image Capture

We capture images in a controlled environment to isolate
optical blur. A planar calibration target is placed in the en
vironment and a camera is mounted on a tripod at a xed
viewing distance. The tripod head is manually adjusted to
align the lines of the test chart to the edges of the camera
view nder. The camera is focused on the center of the test cally. The homography is then iteratively re ned. In ti#

chart using a remote control and images are captured withiteration, a coarse-to- ne differential registration teique

the internal mirror locked up to eliminate camera vibrasion  js used to compute a projective homographythat aligns
This con gurationis suf cient to calibrate lenses withfalc  the synthetic square to the observed image. The homogra-
lengths abovd 7mm and apertures larger thén4, which phy is then updatecH HiH and the synthetic image

do not have signi cant depth-of- eld blur in the corners. s re-rasterized. This iteration ends whenis close to an

We capture all images in RAW format at the lowest avail- jdentity. The resulting homography gives sub-pixel align-

able ISO setting and estimate blur on RAW color channels ment between the test chart and blurry square, Figure 1.
prior to color matrixing.

Figure 1. Blur estimation. Top left, the test chart; top tightest
image with optical blur; bottom left, the synthesized, aéd, test
chart; bottom right, th&x super-resolved non-parametric kernel.

2.2. Non-parametric Kernel Estimation 2.2.2 Kernel Estimation

To model optical blur we begin by computing non- We estimate non-parametric blur kernels for each square by
parametric blur kernels that describe the blur in small re- synthesizing a sharp square from the aligned test chart. The
gions of the test images. Each test image contains ablur kernel can be computed by using conjugate gradient de-
checkerboard test chart with ve circles in each square to scent to solve the least squares sysfém= b, wherek is
capture how step-edges of all orientations are blurred. Forthe kernelA is a Toeplitz matrix that encodes the convolu-
each square in the testimage we align the mathematical deftion of the sharp square with the kernel, @nid the blurry
inition of the test chart to the local region and synthesize a square. This optimization can be performed ef ciently in
sharp square (Section 2.2.1). We use the test image and syrthe Fourier domain without explicitly constructig Al-
thesized sharp square to estimate a non-parametric kernghough this method allows negative kernel values, in prac-
(Section 2.2.2). This process is summarized in Figure 1.  tice these are small and easily removed by thresholding and
re-normalizing the kernel.

Because optical blurs are sometimes small, in practice
we super-resolve the blur kernel. The homography
The test chart is aligned to individual squares in the test im which is known to sub-pixel accuracy, is used to synthe-
age before estimating the corresponding blur kernel. Thesize a high-resolution test chart and the linear system be-
corners of the square in the test image are localized and a&comesW Ak, = WUb, whereA; andk,; encode the high-
bootstrap projective homographlyis computed that aligns  resolution test chart and kernel. Mattixup-sample® and
the test chart to the square [7]. The homography is used toW is a weight matrix that assigns zero-weight to interpo-
rasterize a synthetic image of the square from its mathematdated pixels. By formulating this problem witd andW,
ical de nition: chart edges are anti-aliased by computing matrix A, does not need to be constructed and the convo-
the fraction of the pixel that is lled and the white/black lutions can be performed in the Fourier domain. This com-
point are set to the histogram peaks of the square in the tesputation is fast compared to non-negative least squares, as
image. This shading is effective because it is applied lo- in [9], and a smoothness regularization term was not nec-

2.2.1 Test Chart Alignment
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essary. To account for the interpolant when deblurring, in
practice we estimate kernels with a uniform weight matrix
W | . This additional smoothness does not distort the
kernelwhen observed at the original resolution. In thiskwvor
we super-resolve kernels &t image resolution.
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2.3. Parametric Kernel Fitting

. . Worst ML
l_\lon_-pargmetrlg kerr_1e|s can describe c_omplt_ex blurs but Gaussiarm
their high dimensionality masks the relationship between
the kernel shape and the optical parameters. We use a ‘
2-D Gaussian distribution to reduce the dimensionality and
model the kernel shape. Because non-parametric kernels
can be noisy, we use a robust method to t D Gaus-
sian. The non-parametric kernel is thresholded, isolated
regions are labelled, and the maximum likelihood (ML)
estimator is used to t &-D Gaussian to the central re-
gion. The ML Gaussian then iteratively re ned by using
the Levenberg-Marquardt algorithm to estimate the Gaus-
sian parameters that minimize the SSD error between the ‘
non-parametric kernel and the synthesi2e® Gaussian. Error }atl,i

To quantify the impact of the Gaussian approximation Figure 2. Gaussian approximation error using robust andi-max
and validate the robust tting method, we compared images mum likelihood Gaussians. Top, deconvolution with the Gaars
that were deconvolved with non-parameteric kernels, ML ernels that gave the largest (worst) SSIM error ratio of68i
Gaussian kernels, and robust- t Gaussian kernels. Specif-kemels' Bottom, cumulatwc_e dlstnb_uno_ns of error rati@ashed .
. . . lines, using the ML Gaussian; solid lines, the robust Gaussi
ically, we used two images, one natural and one synthetic,, . ; . g

. ... 'Light/dark lines show error in the natural/synthetic image

and called them sharp. We blurred both sharp images with
660non-parametric kernels that were estimated from a test

lens. This produced two sets 660 blurry images. We  { Gayssians (solid lines). The robust- t Gaussians proeluc
deconvolved each of the blurry images with the requisite |, er deconvolution erro@9%of the errors fell below 1.01
non-parametric kernel, robust- t Gaussian kernel, and ML 414 1 02 for the natural and synthetic images, respectively

Gaussian kernel. _ , _ For the ML Gaussian99% of the errors fell belowl:15
We measured the visual quality of the deconvolutions ;,41:2¢,

by computing the mean Structural Similarity Index (SSIM)

1
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[17] between the deconvolved and sharp images. If the
ML Gaussian kernels produce larger error than the robust-
t Gaussians, the SSIM index of the robust- t Gaussian is
greater. However, the difference between the two SSIM in-
dices is also greater when kernels are large because deco
volution error increases with kernel size, even when using
the ground-truth kernel [14]. Therefore, we compare SSIM
indices and account for kernel size by comparing a ratio, as
in [14],

error ratio= ( SSIMnon + 2) =(SSIMgau+ 2) ;

(1)

wheressiMyon is the SSIM given by the non-parametric ker-
nel andssivgy, is the SSIM given by a Gaussian kernel.
(The+2 is added to shift the SSIM intfd; 2]). This error

Figure 2 (top) shows the deconvolved natural images that
gave the largest (worst) SSIM error ratio for both types
of Gaussian kernels. The worst robust- t Gaussian kernel
produces a deconvolution result that is very similar to de-
convolution by the non-parametric kernel and improves the

rblurry image. In contrast, the worst ML Gaussian produces

a deconvolution result with dramatic artifacts that are not
present when using the non-parametric kernel. The worst
ML Gaussian result (SSIM error ratib:17), and worst
robust- t Gaussian result (SSIM error ratlc01), give intu-

ition for the range of visual errors along tkeaxis of the cu-
mulative distribution (bottom). This demonstrates that th
robust- t Gaussians produce visually small errors and are a
good approximation to the optical blurs in the test lens.

r:?\tio is greater than one when deconvolution by the Gaus_—2_4. Kernel Variation Models

sian kernel produces worse results than the non-parametric

kernel and is equal to one when the Gaussian kernel pro- Optical blur depends upon multiple factors including

duces an identical result. spatial location on the senswryy, focal lengthf , aperture
Figure 2 (bottom) shows the cumulative distribution of a, and color channel. Images may contain signi cant, asym-

the errors for the ML Gaussians (dashed lines) and robust-metric, optical blurs, particularly in the corners, Fig@reA



calibrationimage could be used to estimate and correct such
blurs for photos taken with the same lens settings; however,
in practice it is dif cult or impossible to calibrate all psis

ble settings. To overcome this problem we developed two
models, each with different strengths, to predict optidat b

at novel settings from a sparse set of calibration images.
Speci cally, we compare two models to describe how the
Gaussian covariance parameters

CX%( ny
2
ny Cy%/ ( )

vary. The mean is assumed to be zero. Both models com-
prise three independent polynomials that predict the three
degrees of freedom in, C,, Cyy, and the correlation

Co = Cyy=C«Cyy. We model the blur in each color
channel separately and the remaining discussion addresses
a single color channel.

The rst model is a polynomialG(x;y;f;a), where
X;y are the spatial location of the kernel afd a are
the focal length and aperture at which the image was cap-
tured. Speci cally, this global model may be ay.
that contains all polynomial terms kjy;f;a up to order
max(; ), such that the order of terms that contairor Figure 3. Non-parametric kernels from two Carfohid0mm f=4
y is at most and the order of terms that contdinand lenses on a CandtD Mark Il (at 40mmf=5). Kernels are super-
ais at most . For exampleGs.; contains all third order resolvgd aBx and.enla.rged for display. The nja>§imum blur of the
polynomial terms ir; y; f; a , excepting terms such adx. Ggu_s&an_appr_ommatlons has s_ta_ndard deviatioB ikels; the
Intuitively, and limit the complexity of the individual ~ Mnimum is1 pixel standard deviation.
polynomial predictors that compose the model. Parameters

and were selected to contraty andf;a because our
experiments show that optical blur is complexxry yet
simple inf; a (see Section 3).

The second model is a polynomia(x;y;f;a) that de-
scribes the blur in a locad; y region. The local model has
the same form as the global: any that contains all poly-
nomial terms inx;y; f;a up to ordermax(; ), where
and control the complexity of the model ixiy andf;a.
The motivation behind this local model is illustrated inFig

of f andais estimated by cross-validation oveand but
a starting point is needed for data collection. We began by
collecting a set ofimages at a xed focal length and varying
aperture. For each image, we computed Gaussian kernels
and plottedC,x , Cyy, andC,, at eachx;y location as a
function of aperture. We repeated this process for a xed
aperture and varying focal length and used these aperture
ure 3. The relationship between optical blur agg may and Ifogal !ffr?gth swegp plotshto select z:]n ihni';]ial samp!ing
be complex and require largefor G. ; however, small resolutionint; a accor Ingtot e_rat-e atw nc the Gaussian
e . parameters vary, Figure 4 (details in Section 3).
may be reasonable for a local region. Because we can easily
collectdense blur samples by decreasing the testchagt scal  The complexity of the global and local models is deter-
the local model takes a more data-driven approach and tsmined by cross-validation overand . A cross-validation
L. tolocal regionsin which is small. dataset oN;y N, images is captured, wheMy andN,
The radius of the local model and the test chart resolution are the number of samples in theanda dimensions. The
are chosen to match the complexity of the spatial variations sampling resolution constrains the complexity®f and
For stability, the radius should be at le2stthe widthofthe L. to < min(N¢;N,). In this work, we consider
largestimaged squares. Aradiussgfworked well. Imaged  |ocally-linear modeld ;. and perform cross-validation of
squares were betwe@% and6% of image width and we ;. for alone.

sampled the blur at alternating squares. )
The values of , for the global model are computed in

two cross-validation stages. Lt = min( N¢; Ng,). First
we plot the mean prediction error &y 1 against and
To tthe blur models, images are captured at multiple focal select an optimal valueq. In the second stage, we repeat
length and aperture combinations. The sampling resolutionthis analysis foG . , <N , and select.

2.4.1 Model Selection



3. Model Complexity and Comparison

We estimated the focal length and aperture sampling re
olution using a Cano24-105mmf=4 (MSRP $1; 249) on
a CanonlD Mark Ill, (MSRP$3;999). Figure 4 shows the
aperture and focal length sweep plots @y, . Each line
representC,x measured at a xed sensor location. We
performed the aperture sweep (left) by capturing images ¢
each aperturd=4to f=10. The focal length sweep (right)

Cxx (pixels)

Cxx (pixels)

1658

1.4]

1.2]

14 45 5 56 85 95 105

6.3 7.1 8
Aperture (f-number)

was performed across the focal length range. Sharp variaFigure 4. Aperture and focal length sweeps@y using a Canon

tions in the focal length sweep are noise caused by manuall
changing the focal length. Consequently, we subsample
the aperture ttN, = 5 settingsf=f4; 5; 6:3; 8; 10g, and

N¢ =5 focal lengthsf 24; 44; 65; 85; 105gmm.

We computed the complexity of the models by cross-
validation using the CanoB4-105mm f=4 and a second
lens, a Canori7-40mm f=4 (MSRP $840). Similarly to
the24-105mm lens, we sampled tHer—40mm at5 settings
in focal length and aperture. We collectgdimages from
each lens, two images at each settingVe computed the
Gaussian kernels for each image and used hold@6gtoss
validation to compute prediction error.

Figure 5 shows cross-validation error for the global
model: left, error for ; right, . The local-linear plots for

are similar to those in Figure 5 (right)We compute the
error as a percentage of the range of blurs on each lens ar
de ne this range to be the width of tf#9%con dence in-
terval for each Gaussian parameter. Not shown in Figure £
are the error distributions at each . On thel7-40mm
lens, 95% of the error is below20% for > 6; on the
24-105mmlens, > 5.

Based upon the mean and distributions of the cross-
validation error, we selected mod@&s.; andL ;3.

We compared the global and locally-linear mod-
els using a test set ofl6 images that we captured
at novel settings of the Canoi7-40mm f=4 lens:
f19:8; 25.6; 31:37; 37.1gmm andf=f 4:5; 5:6; 7:1; 9:0g.

y24—105rnmf=4 lens on a CanofhD Mark Ill. Each line represents
dthe Cxx term at a xed sensor location. Theaxis labels mark

the sampled parameter values. L&, at 105mm fromf=4 to
f=10; right, Cxx atf=4 from 24-105mm.
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Figure 5. Mean cross-validation error for the global modghg
two lenses. Top row, Can®@4-105mm f=4; bottom row, Canon

We estimated the Gaussian kernels in each test image, t17-40mmf=4. Dark and light solid lines represe@. andCyy

modelsGg.3 andL .3 to the cross-validation dataset, and
computed prediction error. Figure 6 shows the cumulative
distribution of error forGg.3 (dark solid lines) and._;.3
(dark dashed lines). Top lef€ ; right, Cyy ; bottom,Co; .
For all parameter@5%o0f errors were belot0% Notably,
modelsGg.; andL ;.1 (light lines) are also competitive.

To summarize, Figure 4 shows that optical blur varies

slowly with f; a and these dimensions may be subsampled.

Figure 5 shows that optical blur is complexxny, simple
inf;a, and we select modefSs.3 andL ;3. Figure 6 shows
thatGg.3 andL ;.3 are equally good models for the test lens.

1samples from the cross-validation set are shown in Figusesi17.

2At L 1.3, for the Canor24-105mm, mean cross-validation error was
3:6%, 3:7%, and3:4% (Cxx Cyy andCyr ); for the Canonl7-40mm it
was4:0%, 3:5%, and3:7%.

error; dashed line$;,, error. Left, mean percent error for models
G . 4. Right, mean percent error for modés. .

4. Results

To give intuition for the visual impact of prediction er-
ror, we selected Gaussian kernels with an average error of
1%, 10% and maximum error under thHe;.3 model. For
each kernel, we deconvolved the requisite square in the test
image using the predicted Gaussian kernel, the robust-t
Gaussian kernel, and the non-parametric kernel, Figure 7.
We used the non-blind deconvolution algorithm described
in [12] (code: [13]). Atl1% error (top row), the predicted
and robust- t kernels produce nearly identical results. At
10% error (middle row), the predicted kernel produces a
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Figure 6. Cumulative distribution of test error when préidig
blurs at novel lens settings. Top le@ , right Cyy , bottomCo .
Solid lines denote global models; dashed lines denote focal
linear models. Dark lines deno@;.; andL 1.3 models; light lines
denoteGg.1 andL 1.1 models.

sharper result than the robust- t kernel, demonstratireg th

the model reduces noise in the individual samples4@%

error (bottom row), both the predicted and robust- t kemel

produce blurrier results than the non-parametric kernel.
To test deblurring outside of the lab, we captured two im-

ages using the Candiv—40mmf=4 on a CanorlD Mark

[ll. The rstis a dominantly planar indoor scene, Figure 8

Original DxO Algorithm

A AL A A
1930 hour 1330 hour

Ground Truth Kernel Predicted Kernel

13:30 hoyr 12:30 hour

Figure 11. Comparison to DxO software [3]. A non-parametric
kernel from a calibration image is used as ground truth. The-
predicted Gaussian kernel produces a sharper solutiorDk@n

and the non-parametric kernel (labblanda).

We also tested a consumer-grade system, a Canon Rebel
T2i with a 1855mm f=3:5-5:6 lens (MSRP $899 com-
bined. Deblurring results at8mmf=3:5 are shown in Fig-
ure 10. Blurs for the Rebel are spatially-varying and smalle
at 18mm f=3:5 than the Canorl7-40mm (relative to the
much larger image size of the?i).

The full resolution images for Figures 8—11 are available
at: http://www.juew.org/lensblur/materials.zip

Finally, we tested two additional lenses, a Nikkor
24-120mmf=3:5 5:6(MSRP $669) on a Nikon (B (MSRP
$4;999), and a duplicate Canoh7—40mm f=4. Predic-
tion error was low for the Nikkor95%of predictions were
within 10%error. We used the duplicate Canon lens to test

body manually, used mirror-up mode to reduce vibration,

and focused on a location neht on the center clock dial.
Spatially-varying blur can be seen at locatidrend?2, Fig-

Using the rst Canon model to predict blurs in the duplicate
gave large error95%of prediction errors were belo®1%,
46% and74%errof. The blur in the duplicate Canon is

ure 8 (middle and bottom). We deconvolved both locations duantitatively and qualitatively different, Figure 3.

using the Gaussian kernel predictedlby; ( gure label b)
and a non-parametric kernel ( gure latsl estimated from

a calibration image. The predicted kernel produces a result

that is very similar to the non-parametric kernel.
For additional comparison, we deblurred the indoor im-
age with the optical deblurring software, DxO [3]. We ad-

justed the parameters for the best output, Figure 11. Com
pare the DxO result to the result when using a ground truth
kernel taken from a calibration image and when using the

predicted Gaussian. The DxO result is blurrier, possibty be
cause one modelis used for all Caidk40mmf=4lenses.

We captured an outdoor image with the same setting as

the indoor image35mm f=4, Figure 9 (top). Spatially
varying blur can be seen at locatiohend2. The image
is sharper when deconvolving with both the.; Gaussian

5. Discussion

The results show that our optical models provide accu-
rate kernels for image restoration and successfully iterp
late data between measurement points. Practically, tiee siz
of the models—global 12kb, local 200kb—is suf -
ciently small to be included in photo editing packages. Fur-
thermore, the low-order relationship between optical blur
and focal length/aperture allows both models to be t with
few calibration images and the Gaussian parameters can be
ef ciently estimated directly from an image.

An intriguing point is that the kernels that we measured
differ from Joshi's [9], which are more disc-shaped. One

3Prediction error is de ned in Section 3.
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explanation is that Joshi and colleagues studied consumer-[8] N. Joshi, S. B. Kang, C. L. Zitnick, and R. Szeliski. Image
grade lenses that may suffer from front- or back-focusing.
In this case, their measures would be dominated by defocus
blur that corresponds to the image of the aperture possibly [9]
truncated by the lens barrel. Our pro-grade lenses arey likel
to focus accurately and greatly reduce defocus blur. Our ob-

servations are mostly due to imperfections in the glass used

to build the lens. This difference is also consistent with th
fact that Joshi's kernels are symmetric because they depen

on the shape of the barrel, whereas ours are not becaus

1]

they are due to inaccuracies in the glass. We believe that it
is important to model the optical inaccuracies because, agy
we have shown, these visibly degrade image sharpness.
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Figure 8. Image taken with a Canon 1D Marligure 9. Image taken with a Canon 1D Marlfigure 10. Image taken with a Canon Rebel
I, at 35mmf=4:5. Images; bare deblurred Ill, at 35mmf=4:5. Imagesa; bare deblurred T2iat18mmf=3:5. Images; bare deblurred
with non-parametric and Gaussian kernels. with non-parametric and Gaussian kernels. with non-parametric and Gaussian kernels.



